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Lecture outline

Introduction to the class
Introduction to the problem of classification

Linear classifiers

Image-based features
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Class objectives

Treatment of a broad range of learning techniques.
Hands-on experience through computer vision applications.

By the end: you should be able to understand and implement a paper
lying at the interface of vision and learning.




Who will need this class?
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Boundary detection problem

Object/Surface Boundaries
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Signal-level challenges
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Fundamental challenges: can humans do it?
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Fundamental challenges: can humans do it?
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Fundamental challenges: can humans do it?
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How can we detect boundaries?

Filtering approaches
Canny (1984), Morrone and Owens (1987), Perona and Malik (1991),..

Scale-Space approaches

Tony Lindeberg "Edge Detection and Ridge Detection with Automatic Scale Selection.’,
IJCV, 30(2), 117-156, (1998)

Variational approaches
V. Caselles, R. Kimmel, G. Sapiro: Geodesic Active Contours. IJCV22(1): 61-79 (1997)

K. Siddiqi, Y. Lauziere, A. Tannenbaum, S. Zucker: Area and length minimizing flows
for shape segmentation. IEEE TIP 7(3): 433-443 (1998)

Statistical approaches

Agnés Desolneux, Lionel Moisan, Jean-Michel Morel: "Meaningful

Alignments’. International Journal of Computer Vision 40(1): 7-23 (2000)




Machine Learning for Computer Vision - Lecture 1

Learning-based approaches

Boundary or non-boundary?

Use any visual cue as input to the decision function.
Use decision trees/logisitic regression/boosting/... and /learn to combine the individual inputs.

S. Konishi, A.Yuille, J. Coughlan, S.C. Zhu, “Statistical Edge Detection: Learning and Evaluating Edge Cues”, IEEE PAMI, 2003
D. Martin, C. Fowlkes, J. Malik. "Learning to Detect Natural Image Boundaries Using Local Brightness, Color and Texture
Cues", IEEE PAMI, 2004
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Progress durlng the Iast 4 decades

Humans

Learning-based, ‘08

Best up to ~1990

Precision

1965

Human C0n5|stency [F 0.79]
Maire, Arbelaez, Fowlkes, Malik color (2008) [F=0.70]
Maire, Arbelaez, Fowlkes, Malik gray (2008) [F=0.68]
Martin, Fowlkes Malik gray (2004) [F=0.63]
Canny opt. threshold and hystheresis (1986)  [F=0.58]
Perona, Malik {1990} [F=0.56]
Canny matlab (1986) [F=054]
Hildreth, Marr {1980) [F=0.50] : { : :
Prewitt (1970) [F=048] : : : : .

* Sobel (1968) [F=048] | ; i : 100 test images

* Roberts (1965) [F=047]
|

I I I I
0.1 02 03 04 05
Recall

Reference: Maire, Arberaez, et. al., IEEE PAMI 2011
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Progress during this decade
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Learning and Vision problem Il: RGB-D scene labeling

RGB

Depth

B IS cooksher  Cabinet  Ceilng  [IFIGORNN]  Picture
IS | ovie . G I M oo

Ground truth

Output
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Learning and Vision problem lll: Face Detection
 How do digital cameras detect faces?
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"Faceness function’: classifier

Background Decision boundary
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Sliding window approaches

e Scan window over image
— Multiple scales
— Multiple orientations

» Classify window as either:
— Face
— Non-face

— Face
Window ——| Classifier

— Non-face

Slide credit: B. Leibe




e Discriminative

stride
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Two Main Approaches
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Two Main Approaches

e Generative

The World The Estimator
L Parameters
Hidden State «oevverennpenniiiir Visible State .}y w Hidden State

(inverse

("Internal" to (mapping - ("External") .
mapping)

the World) function)

("Internal" to
the Estimator)

Likelihood Prior
P(X|Y)P(Y)
P(X)

Posterior
PY|X)
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Discriminative techniques

e |ectures 1-4:
— Linear and Logistic Regression
— Adaboost, Decision Trees, Random Forests
— Support Vector Machines

e Unified treatment as loss-based learning

oy 2 y*f(x)
Ideal misclassification cost H(-z) (# training errors)
Exponential Error exp(-z) (Adaboost)

Cross Entropy error In(1 + exp(-2z)) (Logistic regression)
Hinge loss max(0,1-z) (SVMs)




Generative Techniques

e Lectures 5-7
> Hidden Variables, EM, Component Analysis
> Structured Models (HMMs, Deformable Part Models)

-~
< \
&

Iy

e Lecture 8
 Diseriminative l . | Models (2013

» Deep Learning and Object Detection



Coupling of theory with applications

Lecture 5: PCA + Newton-Raphson

PCA




Coupling of theory with applications

Lectures 5-6: Graphical Models + Detection

Bayesian Network




Coupling of theory with applications

Lecture 6: Dynamic Programming + Detection
Up(z') = (wp, H(z')) %@X[Up(x’) + Bp(x,2")]




Coupling of theory with applications

Lecture 7: Branch-and-Bound + Detection
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Coupling of theory with applications

Lecture 7: Branch-and-Bound + Detection
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Coupling of theory with applications
Lecture 7: ADMM + MRFs for Shape Segmentation

Input image
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Organization

e 3 |abs in Matlab (10 points)

> Start with small preparatory exercises (synthetic data)

1 Project (10 points)
> Extension of 3 labs to real data

® Or: small-scale research project (20/20)
e (Class webpage:

http://cvn.ecp.fr/personnel/iasonas/teaching.html

First class: ENS-Cachan, Oct. 2, Thursday 9h45

Further questions: iasonas.kokkinos@ecp.fr
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Lecture outline

Introduction to the course
Introduction to the classification problem

Linear Classifiers

Image-based features
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Classification Problem

« Based on our experience, should we give a loan to this customer?
— Binary decision: yes/no

Low-Risk

— Decision boundary
High-Risk

features
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Learning problem formulation

Given: Training set of feature-label pairs S = {(:EZ, yz)} 1 =1,...,N

y' €{0,1} 2'e X
Wanted: ‘simple’ f : X — {O, 1} that "works well’ forS

Why “simple’? good generalization outside training set

"works well': quantified by loss criterion L (.5, f)




Machine Learning for Computer Vision - Lecture 1

Classifier function

* |nput-output mapping

Output: y
Input: X
Method: f
Parameters: w

» Aspects of the learning problem
— Identify methods that fit the problem setting

— Determine parameters that properly classify the training set
— Measure and control the "complexity’ of these functions

Slide credit: B. Leibe/B. Schiele
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Loss criterion

Yy

F(z") 03 01 09020307 05 02

1
G.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
1.2=1.02

Desired outputs

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

1.2=1.00

0.0 0.0 00 0.0 0O 00 0.0 DO

II‘lIII‘lResponses

classifier

classifier

Observations

— Euclidean distance is not so good for classification

— Maybe we should weigh positives more?

Loss should quantify the probability of error, while keeping the learning
problem tractable (e.g. leading to convex objectives)

Slide credit: B. Leibe/B. Schiele
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Lecture outline

Introduction to the class
Introduction to the problem of classification

Linear classifiers

Linear regression and least squares
Regularization: ridge regression

Bias-Variance decomposition

Logistic regression
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Linear regression

Classifier: mapping from features ' € X tolabels yi c {O, 1}
f: X —{0,1}

Linear regression: linear f : RK — R
K

Y= fulr) =<z,0>= Zkak
k=1

binary decision can be obtained by thresholding f
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Linear Classifiers

« Find linear expression (hyperplane) to separate positive and negative examples

X;positive: X, w+b=0

X, negative: X, w+b<0

Each data point has

a class label:
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Loss function for linear regression

Training: given S = {(33Z7 yz)} i=1,..., N  estimate optimal W

Loss function: quantify appropriateness of W

L(S. fu) Zu fule)) (y'= <o’ w>)°

1=1

sum of individual errors (‘additive’) quadratic

Why this loss function?

Easy to optimize!
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Least squares solution for linear regression
N

Loss function: L(’LU) — Z(yi— < xi,w >)2
i=1

Introduce vectors and matrixes to rewrite as quadratic expression:
wq

i ) ol 1 1
yl '11 . .. ..lk e o o c.I.K

YN

Residual: e=y — Xw
Lw)=ele =yTy — 2w XTy + w! X"Xw
J(w) = —2X"y +2X' Xw

w* = arg min L(w) = (XTX)_1 X1y
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Questions

Is the loss function appropriate?

Quadratic loss: convex cost, closed-form solution

But does the optimized quantity indicate classifier’'s performance?

Is the classifier appropriate?

Linear classifier: fast computation

But could e.g. a non-linear classifier have better performance?

Are the estimated parameters good?

Parameters recover input-output mapping on training data

How can we know they do not simply memorize training data?
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Inappropriateness of quadratic penalty

We chose the quadratic cost function for convenience
Single, global minimum & closed form expression

But does it indicate classification performance?

Computed Decision Boundary
Y Linear Fit

/

whww

Desired decision boundary

Quadratic norm penalizes outputs that are "too good’

Logistic regression, SVMs, Adaboost: more appropriate loss
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Questions

Is the loss function appropriate?

Quadratic loss: convex cost, closed-form solution

But does the optimized quantity indicate classifier’'s performance?

Is the classifier appropriate?

Linear classifier: fast computation

But could e.g. a non-linear classifier have better performance?

Are the estimated parameters good?

Parameters recover input-output mapping on training data

How can we know they do not simply memorize training data?
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Classes may not be linearly separable

Linear classifier cannot properly separate these data

Each data point has

a class label:
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Beyond linear boundaries

Non-linear features: non-linear classifiers & decision boundaries

Y

RN, A
NI S
Oy "j"llll l%\\
03‘"‘2{’"’;#}% AN
0‘7'01‘1;”1111

How do we pick the right features?

This class: domain knowledge

Next classes: kernel trick (svms) greedy selection (boosting)
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Questions

Is the loss function appropriate?

Quadratic loss: convex cost, closed-form solution

But does the optimized quantity indicate classifier’'s performance?

Is the classifier appropriate?

Linear classifier: fast computation

But could e.g. a non-linear classifier have better performance?

Are the estimated parameters good?

Parameters recover input-output mapping on training data

How can we know they do not simply memorize training data?
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Lecture outline
Introduction to the class
Introduction to the problem of classification

Linear regression

Linear regression and least squares

Regularization: ridge regression

Bias-Variance decomposition

Image-based features
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Overfitting problem

Learning problem: 100 faces, 1000 background images
Image resolution: 100 x 100 pixels (10000 intensity values)

- B A N . 10000
Linear regression: ¥ = fwlz") =< w,z" > w € R

i e {1

More unknowns than equations: ill posed probler

1
* T T
perfect performance on training set W= (&5) Xy
104 x104

unpredictable performance on new data
Rank-deficient matrix

"Curse of dimensionality’: in high-dimensional spaces data become sparse
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L2 Regularization: Ridge regression
K

Penalize classifier’s L2 norm: [|w]|5 = E wi =wlw
k=1

Loss function: L(W) —ele + Aw!w e=y — Xw

data term complexity term residual

—yly —ow! X!y + wl (XTX - )\I) W

w' = (XTX + A1) Xy

Full-rank matrix

So how do we set A ?
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Tuning the model’s complexity

A flexible model approximates the target function well in the training set

but can overtrain and have poor performance on the test set

A rigid model’s performance is more predictable in the test set

but the model may not be good even on the training set

High Bias Low Bias
Low Variance High Variance

Test Sample

Prediction Error

/

Training Sample

Model Complexity




Machine Learning for Computer Vision - Lecture 1

Selecting A with cross-validation

« Cross validation technique
— Exclude part of the training data from parameter estimation
— Use them only to predict the test error

 10-fold cross validation:

Training

" validation

« Use cross-validation for different values of A
— pick value that minimizes cross-validation error
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Lecture outline

Introduction to the class
Introduction to the problem of classification

Linear classifiers

Image-based features
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Domain knowledge

We may know that data undergo transformations irrelevant to their class

E-mail address: capital letters (lasonas@gmail.com = iasonas@gmail.com

Speech recognition: voice amplitude is irrelevant to uttered words

Computer vision: illumination variations

Invariant features: not affected by irrelevant signal transformations
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Photometry-invariant patch features
Photometric transformation; [ —al+b

 Make each patch have zero mean:
* 0 I
ﬂ S P

€Ty
Original Patch and Intensity Values

Z(x,y)=1(x,y) — p
. W""*““ﬂ_ Then make it have unit variance:
L2

‘ 1
Brightness Decreasec g = N E 7 (a

mml,v‘“m‘“ €Ty
Z(x.
E ZN(:U, -y) — <1Ty)

Contrast increased,
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Dealing with texture

100 200 300 400 500 600
X

What kind of features can appropriately describe texture patterns?

“appropriately": in terms of well-behaved functions

o? +y? |
Gabor wavelets: Guiwso(e.y) = 5.2 ) epljwre +way)

Increasing

w| = \wi+ws
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Envelope estimation (demodulation)
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Multiband demodulation with a Gabor filterbank

Multiband Demodulation

9

Havlicek & Bovik, IEEE TIP '00
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Dealing with changes in scale and orientation

Scale-invariant blob detector
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Application: Image Stitching

Slide credit: Darya Frolova, Denis Simakov
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Application: Image Stitching

e Procedure:
Detect feature points in both images

Slide credit: Darya Frolova, Denis Simakov
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Application: Image Stitching

e Procedure:
Detect feature points in both images
Find corresponding pairs

Slide credit: Darya Frolova, Denis Simakov
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Application: Image Stitching

e Procedure:
- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align the images

Slide credit: Darya Frolova, Denis Simakov
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Common Requirements

e Problem 1:
- Detect the same point independently in both images

No chance to match!

Slide credit: Darya Frolova, Denis Simakov
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Laplacian-of-Gaussian

Gaussian Laplacian of Gaussian

T
,‘:;\‘:R\\ﬁ\‘\\
(R
“‘t““"‘\\\\\
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Early edge detection research

o Zero-crossings of LoG operator at increasing scales

QA RIS
3 P@
ples

« Different take: go for the maxima/minima
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Finding blobs

Itering= inner product between image patch and filter: template matching

I—f> = {I-fI-F)
L I) +(f, f) —2(f, I)

C_2<]7f>

Polka Dots Detected Blobs
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Scale selection

« First idea: convolve with Laplacians at several scales and find
maximum in scale

e Observation: Laplacian decays as scale increases:

Unnormalized Laplacian response

-20f 1 -20t

-20 -8 0 8 20 -20 20 -20 0
Original signal d c=2.00

increasing o
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Scale normalization

The response of a derivative of Gaussian filter to a perfect step
edge decreases as ¢ increases

0.25

02F
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Scale normalization

The response of a derivative of Gaussian filter to a perfect step
edge decreases as ¢ increases

To keep response the same (scale-invariant), must multiply
Gaussian derivative by o

Laplacian is the second Gaussian derivative, so it must be
multiplied by ¢
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Effect of scale normalization

Unnormalized Laplacian response

20 1 20p

AN

-20 -8 0 8
QOriginal signal

extremum
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob
detection in 2D
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob
detection in 2D

Scale-normalized:
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Scale selection

e Characteristic scale: peak of normalized Laplacian response

2000

characteristic scale

Tony Lindeberg: Feature Detection with Automatic Scale Selection. International
Journal of Computer Vision 30(2): 79-116 (1998)

Tony Lindeberg: Edge Detection and Ridge Detection with Automatic Scale
Selection. International Journal of Computer Vision 30(2): 117-156 (1998)
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Scale invariance using scale selection

LANTTITTTTT
2.0 2.89

Laplacian
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Scale-space blob detector: Example

Slide credit: S. Lazebnik
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Scale-space blob detector: Example

sigma = 3.1296

Slide credit: S. Lazebnik
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Scale-space blob detector: Example

sigma = 4.8972

Slide credit: S. Lazebnik
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Scale-space blob detector: Example

sigma = 7.6631

Slide credit: S. Lazebnik
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Scale-space blob detector: Example

sigma = 11.9912

Slide credit: S. Lazebnik
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Scale-space blob detector: Example
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Tony Lindeberg: Feature Detection with Automatic Scale Selection.
International Journal of Computer Vision 30(2): 79-116 (1998)
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Blob coordinates: (x,y,scale)

"r"r*u"r 0-SA B TS 02 X Ry 10|
’« b "J‘,. "A ‘r

Tony Lindeberg: Feature Detection with Automatic Scale Selection.
International Journal of Computer Vision 30(2): 79-116 (1998)
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Laplacian of Gaussian ~= Difference of Gaussian

« We can efficiently approximate the Laplacian with a difference of
Gaussians:

L=0" (Gxx(x,y,a) + ny(x,y,a))

(Laplacian)

T T T T T T T T

DoG = G(xayaka)_G(xayaa)

(Difference of Gaussians)

= | aplacian
— DoG
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Efficient Computation (SIFT)

e Computation in Gaussian scale pyramid

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

David G. Lowe: Distinctive Image Features from Scale-Invariant
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Keypoind Detection (SIFT)

(a) 233x189 image
(b) 832 DoG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures (removing
edge responses)
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SIFT computation

]

Slide credit: E. Tola
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SIFT computation

Slide credit: E. Tola
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SIFT computation

Slide credit: E. Tola
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SIFT computation

descriptor

Slide credit: E. Tola
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SIFT computation

Slide credit: E. Tola
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SIFT computation

Slide credit: E. Tola
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SIFT computation

Slide credit: E. Tola
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Scale-Invariant Feature Transform (SIFT) descriptor

Use location and characteristic scale given by blob detector

Estimate orientation from orientation histogram

ot

Break patch in 4x4 location blocks

8x4x4 = 128-D descriptor

Normalize to unit norm

*
8-bin orientation histogram per block JBEChE ) 2aauu ol
>

Invariance to: scale, orientation, multiplicative & additive changes
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Application: Image Matching

Assumption: images undergo global deformations with a few degrees-of-freedom
(e.g. scaling, rotation)

Correspondences of a few points suffice
(found e.g. with SIFT)
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Open source |mplementat|on www.vlifeat.org

Window Help e Z=TMMO @ 3 ) E 3 Thulll00AM Q
Close

C M [ www.vifeat.org/overview/tut.html

Home This section features a number of tutorials ilfustrating some of the main algorithms implemented in VLFeat. I'he tutorials can
categories. The first class of algorithms detect and describe image regions (features). The second class of algorithms cluster:

Download
Documentation Features

Tutorials Covariant detectors. An introduction to computing co-variant features like Harris-Affine.

Covdet
HOG
SIFT Scale Invariant Feature Transform (SIFT). Getting started with this popular feature detector / descriptor.

DSIFT/PHOW Dense SIFT (DSIFT) and PHOW. A state-of-the-art descriptor for image categorization.
MSER

IKM
HIKM Image distance transform. Compute the image distance transform for fast part models and edge matching.

Histogram of Oriented Gradients (HOG). Getting started with this ubiquitous representation for object recognition.

Maximally Stable Extremal Regions (MSER). Extracting MSERs from an image.

AlB

Quick shift
SLIC * Integer optimized k-means (IKM). A quick overview of VLFeat fast k-means implementation.
kd-tree

Clustering

e Hierarchical k-means (HIKM). Create a fast k-means tree for integer data.
Distance transf.

Utils
Pegasos Quick shift. An introduction which shows how to create superpixels using this quick mode seeking method.

Agglomerative Information Bottleneck (AIB). Cluster discrete data based on the mutual information between the data and c!

Plots: rank SLIC. An introduction to SLIC supoerpixels.

Applications
Other

e Pegasos SVM. Learn a binary classifier and check its convergence plotting the energy value.
* Forests of kd-trees. Approximate nearest neighbor queries in high dimensions using an optimized forest of kd-trees.

« Plotting functions for rank evaluation. Learn how to plot ROC, DET, and precision-recall curves.

o MATLAB Utilities. A list of useful MATLAB functions bundled with VLFeat.

© 2007-13 The authors of VLFeat
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Further reading (literature ‘seeds’)

« Compact Codes & Large-scale Retrieval

- J. Sivic and A. Zisserman. Video Google: A text retrieval approach to
object matching in videos. ICCV, 2003.

- Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree.
CVPR. (2006)

- M. Perdoch, O. Chum, and J. Matas. Efficient representation of local
geometry for large scale object retrieval. In Proc. CVPR, 2009

- H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local
descriptors into a compact image representation. CVPR, 10

A. Babenko and V. Lempitsky, The Inverted Multi-Index, CVPR 12
R. Arandjelovic¢, A. Zisserman, All about VLAD, CVPR 2013
 Fast/Compact Descriptors

- M. Calonder, V. Lepetit, C. Strecha, and P. Fua, BRIEF: Binary Robust
Independent Elementary Features, (ECCV), 2010.

- T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, Boosting Binary
Keypoint Descriptors. (CVPR), 2013.

- SURF, FAST, ORB, FREAK,...
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Further reading (literature ‘seeds’)

« Feature encoding

— Improving the fisher kernel for large-scale image classification, F. Perronnin, J.
Sanchez, and T. Mensink. In Proc. ECCV, 2010.

— The devil is in the details: an evaluation of recent feature encoding methods, K.
Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, BMVC, 2011

— Sparse Kernel Approximations for Efficient Classification and Detection, A. Vedaldi
and A. Zisserman, in Proceedings of the IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2012
e Descriptor Learning
- Simon A. J. Winder, Matthew Brown: Learning Local Image Descriptors. CVPR 2003
- S. Winder, G. Hua, and M. Brown. Picking the best daisy. In Proc. CVPR, 2009.

— Descriptor Learning for Efficient Retrieval, J. Philbin, M. Isard, J. Sivic, A.
Zisserman,ECCV 10

- K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor learning using convex
optimisation. In Proc. ECCV, 2012
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Histogram of Orientated Gradients (HOG) descriptor

« Dalal and Triggs, ICCV 2005

— Like SIFT descriptor, but for arbitrary box aspect ratio, and
computed over all image locations and scales

— Highly accurate detection using linear classifier

Cell —

Block

Overlap
of Blocks

Feature vector = |
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Part score computation
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Part score
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Part score
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SIFT-> DAISY

Not suitable for dense
computation

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua,
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SIFT-> DAISY

/i%:“\\\\
v

Sym.SIFT GLOH*

I

+ Gaussian + Good

Kernels : Suitable =~ Performance

Computation

* K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local Descriptors. PAMI’04.
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SIFT-> DAISY

DALSY Sym.SIFT

Suitable for dense computation + Suitable for
+ Improved performance:* Dense

+ Precise localization C -
omputation
+ Rotational Robustness ~omputation

* S. Winder and M. Brown. Learning Local Image Descriptors in CVPR’07

GLOH

A
AN

+ Good
Performance

computation
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Daisy computation _.

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua, PAMI, 10
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Daisy computation _.

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua,
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Daisy computation

- Rotating the descriptor only involves reordering the histograms.
- The computation mostly involves 1D convolutions, which is fast.

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua, PAMI, 10




Learning and Optimization for Shape-based Representations

Scale- and rotation- invariance & Fourier

Fact 1: Signal translation does not affect the signal’s Fourier Transform Magnitude:

: . . 2T 2T :
fli —ni, j —njl 7 Fexp (—j <nzﬁ —f—nj?>> H |F|

Fact 2: log-polar sampling turns image scaling and rotation to translation:

Original Scaled
Image + grid@point descriptor Image + grid@point descriptor

scale

angle

Fact 1+2: the Fourier Transform Modulus of log-polar descriptors is invariant

I. Kokkinos and A. Yuille, Scale Invariance without Scale Selection, CVPR, 2008.
D. Casasent and D. Psaltis, Rotation and scale-invariant optical correlation, Applied Optics, 1976



Learning and Optimization for Shape-based Representations

Dense Scale-Invariant Descriptors

I. Kokkinos and A. Yuille, Scale Invariance without Scale Selection, CVPR, 2008.
D. Casasent and D. Psaltis, Rotation and scale-invariant optical correlation, Applied Optics,
1976




Learning and Optimization for Shape-based Representations

Problem: How can a computer find cars (or faces, hands..) in images?

1980’s pixels =» edge =» texton = motif =» part => object

& Akl _a K-Means/ -
2000-2010 P . | 5 SIFT/HOG pooling classifier j=—p “car”

. .
rmoininansiend  ociinAanvdienAd

Deep Learning: Breakthroughs in speech & vision: classification, detection
recognition,...

Results from GooglLeNet, 2014
ECP entry: 7t" out of 38
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Lecture summary

Introduction to the class

Introduction to the problem of classification

Linear classifiers

Image-based features




Who will need this class?

Machine Learning for Computer Vision - Lecture 1

Segmentation
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Progress durlng the Iast 4 decades

Humans

Precision

Learning-based, ‘08

Best up to ~1990

Human Con5|stency [F 0.79]
Maire, Arbelaez, Fowlkes, Malik color (2008) [F=0.70]
Maire, Arbelaez, Fowlkes, Malik gray (2008) [F=0.68]
Martin, Fowlkes Malik gray (2004) [F=0.63]
Canny opt. threshold and hystheresis (1986)  [F=0.58]
Perona, Malik {1990} [F=0.56]
Canny matlab (1986) [F=054]
Hildreth, Marr {1980) [F=0.50]
Prewitt (1970) [F=048]
®  Sobel {1968) [F=048]
* Roberts (1965) [F=047]

I

I I
0.1 02 . . 05
Recall

1965

100 test images
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Lecture summary
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Classifier function

* |nput-output mapping

Output: y
Input: X
Method: f
Parameters: w

» Aspects of the learning problem
— Identify methods that fit the problem setting

— Determine parameters that properly classify the training set
— Measure and control the "complexity’ of these functions
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Lecture summary

Introduction to the class
Introduction to the problem of classification

Linear classifiers

Image-based features
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Linear Classifiers

« Linear expression (hyperplane) to separate positive and negative examples

X;positive: X, w+b=0

X, negative: X, w+b<0

Each data point has

a class label:

_ *1@)
Yt—{_1 0)

" —
Q
i
©
=
©
|
o
O
(&)
Q
| .
=)
]
©
Q
LL

@
Feafure coordinate i
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Linear regression

Least-squares: L(w)=¢e"e e=y — Xw

w* = argmin L(w) —= (XTx)_l X"y

A%

T T
Ridge regression: L(W) =e e+ A\w" w

w* = (X"X + A1) X"y

Tuning \ : cross-validation
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L2 Regularization: Ridge regression

K
Penalize classifier's L2 norm: ”u”g _ 2 :’U’i% — wlw

k=1
Loss function: L(w) = ele + \w'!w

data term complexity term
e=y — XwW

—yly —o2w! X'y + w! (XTX + )\I) W

w' = (XTX + 1) Xy

Full-rank matrix

So how do we set A ?

What is a good tradeoff between accuracy and complexity?
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Tuning the model’s complexity

A flexible model approximates the target function well in the training set

but can be fooled by noise and overtrain

A rigid model is more robust

but will not always provide a good fit

High Bias Low Bias

Low Variance High Variance

Test Sample

Prediction Error

/

Training Sample

Model Complexity
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Lecture summary

Introduction to the class
Introduction to the problem of classification
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Image-based features
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Gabor, SIFT, HOG, Haar...

Encapsulate domain knowledge about desired invariances

computational efficiency
degree of invariance
task-specific performance

analytical tractability
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Appendix-l What is the right amount of flexibility?

Closest fit in population
Realization

Truth ‘ MODEL
L ]

SPACE
Model bias /\
Estimation Bias - Shrunken flt

—_—

Estimation /

Variance

RESTRICTED
MODEL SPACE

Slide credit: Hastie & Tibshirany, Elements of Statistical Learning, Springer 2001
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Bias-Variance-l
Assume underlying function: Y = g() + €
Our model approximates it by: i/ = f](il?) — fw (33) W = h()‘v S)

Approximation quality: affected by model’s flexibility, and the training set.

Different training set realizations: different models

Model’s value at £o : random variable

Express the expected generalization error of the model at o :

Err(xzo)

* + B[(E[§(x0)] — §(w0))”]

~"

Variance
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Appendix-ll: Ridge regression = parameter shrinkage

Reference: Hastie & Tibshirani, Elements of Statistical Learning, Springer 2001

Least squares parameter estimation: minimization of
RSS(w) = (y—Xw)'(y — Xw)
ORSS(w)

2X! (y — Xw)

XX
(X*X)"' X"y
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SVD-based interpretation of least squares

Singular Value Decomposition (SVD) of X

— U D VTt
=~
MxN NxN NxN

diag(dl, e ooy dmin(M,N)7 0, c ooy 0 ), dz > di_|_1, dz > 0
max(M —N,0)

Reconstruction of y on the subspace spanned by X’s columns

y = X(XTX) XTy
y = UDVT(VDTUTUDVT) ' vDTUTy
U (U'y)

orthonormal basis for d—dimensional subspace of RM .
expansion coeflicients for projection of Y onto this basis.
y = UUTly reconstruction (projection) of Y on basis U
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SVD-based interpretation of Ridge Regression

Em’dge (w, )\) = RSS(’UJ) + )\Cridge(w)
Minimization of M

= Ez(yZ — Xw)! (y = Xw) + dwlw

1=1
Regularization: penalty on large values of wTw
Solution w o= (XTX+A)1XTT

SVD interpretation _ X (XTX X )\I)_l XTy

UD (D? + ) DUTy
M
‘Shrinkage’ dz,
B g::l tm d2 + A mY
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Feature Space Interpretation of ridge regression

Covariance matrix (centered data): X'X = VD'UTUDV?' = vD?Vv?t

D? eigenvectors of covariance matrix
V : eigenvalues
Shrinkage: downplay coefficients corresponding to smaller axes

Effectfor I1 = Z2
— Projections:

112
2

— Eigenvalues c = E(a:%)

CQ

— Shrinkage factors 24X

Smallest Principal
Component
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Lasso

Elasso(wa >\) — RSS(’UJ) + )\Classo(w)
M

— Z(y’ — Xw)! (y — Xw) + )\Z |w; |

* Regularization: penalty on sum of absolute values of 4
« Comparison with Ridge Regression

 Minimization of

M

= Asign(w;) + Z —2(y" — Xw) T w;
i=1
M

= Mw;) + Z —2(y" — Xw) T w;

1=1

a(ELasso(’w))
8w7;

O(ERidge(w))
8’(1)@'

— Gradient does not depend on value of W
— Sparsity & subset selection




