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Lecture outline 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Image-based features 
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•  Treatment of a broad range of learning techniques. 
•  Hands-on experience through computer vision applications.  

  
•  By the end: you should be able to understand and implement a paper 

lying at the interface of vision and learning.   
 

Class objectives 
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Learning Segmentation 
Faces Recognition 

Submission/Acceptance Statistics from CVPR 2010 

Who will need this class? 
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Boundary detection problem 
Object/Surface Boundaries 
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Signal-level challenges 

Texture Shadows Poor contrast 
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Fundamental challenges: can humans do it? 
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Fundamental challenges: can humans do it? 
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Fundamental challenges: can humans do it? 
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How can we detect boundaries? 
Filtering approaches 

Variational approaches 

Canny (1984), Morrone and Owens (1987), Perona and Malik (1991),.. 

 

V. Caselles, R. Kimmel, G. Sapiro: Geodesic Active Contours. IJCV22(1): 61-79 (1997) 

K. Siddiqi, Y. Lauzière, A. Tannenbaum, S. Zucker: Area and length minimizing flows 

for shape segmentation. IEEE TIP 7(3): 433-443 (1998) 

Statistical approaches  
Agnès Desolneux, Lionel Moisan, Jean-Michel Morel: `Meaningful 

Alignments’. International Journal of Computer Vision 40(1): 7-23 (2000) 

Scale-Space approaches 

Tony Lindeberg `Edge Detection and Ridge Detection with Automatic Scale Selection.’, 

IJCV, 30(2), 117-156, (1998) 
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Learning-based approaches 
Boundary or non-boundary? 

D. Martin, C. Fowlkes, J. Malik. "Learning to Detect Natural Image Boundaries Using Local Brightness, Color and Texture 

Cues", IEEE PAMI, 2004 

S. Konishi, A.Yuille, J. Coughlan, S.C. Zhu, “Statistical Edge Detection: Learning and Evaluating Edge Cues”,  IEEE PAMI, 2003 

Use human-annotated segmentations 

Use any visual cue as input to the decision function. 
Use decision trees/logisitic regression/boosting/…  and learn to combine the individual inputs. 
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                     Precision-Recall Curves on the B   erk   100 test images 

Humans 

Best up to  ~1990 
Learning-based, ‘04 

Learning-based, ‘08 

1965 

Progress during the last 4 decades 

Reference: Maire, Arberaez, et. al., IEEE PAMI 2011  
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 Precision-Recall Curves on the Berkeley Benchmark 
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0.787: Humans

0.750: Fused (ours + others)
0.741: MIL detector (ours)
0.739: Sparse Code Gradients
0.728: Sketch Tokens
0.714: GlobalPb

Progress during this decade 
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•  How do digital cameras detect faces? 

 
 

•  Input to a digital camera: intensity at pixel locations 

    

 
 

 

Learning and Vision problem III: Face Detection 
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Decision boundary 

Face 

Background 

`Faceness function’: classifier 
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•  Scan window over image  
–  Multiple scales 
–  Multiple orientations 

•  Classify window as either: 
–  Face 
–  Non-face 

 
Classifier 
 

Window 
Face 

Non-face 

Sliding window approaches 

Slide credit: B. Leibe 



Two Main Approaches 

•  Discriminative 
 



Two Main Approaches 

•  Generative 
 

x i ; yi ; i = 1 : : : Nx i

Posterior 
Prior Likelihood 
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Discriminative techniques 

•  Lectures 1-4: 
–  Linear and Logistic Regression   
–  Adaboost, Decision Trees, Random Forests  
–  Support Vector Machines 

 

•  Unified treatment as loss-based learning  

20 

z: y*f(x) 
Ideal misclassification cost  H(-z)        (# training errors) 
Exponential Error           exp(-z)        (Adaboost) 
Cross Entropy error             ln(1 + exp(-z))   (Logistic regression) 
Hinge loss            max(0,1-z)  (SVMs)  



Generative Techniques 
•  Lectures 5-7 

Ø  Hidden Variables, EM, Component Analysis 
Ø  Structured Models (HMMs, Deformable Part Models) 
 
 
 
 
 
 
 
 

•  Lecture 8 
Ø  Discriminative Learning of Structured Models (2013) 
Ø  Deep Learning and Object Detection 



Lecture 5: PCA + Newton-Raphson 
 
 
 
 

Coupling of theory with applications 

PCA 

Newton-Raphson 



Lectures 5-6: Graphical Models + Detection 
 
 
 
 

Coupling of theory with applications 
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p = 1
...

p = P

Object detection with Deformable Part Models (DPMs) 
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Coupling of theory with applications 
Lecture 6: Dynamic Programming + Detection 

 
 
 



Lecture 7: Branch-and-Bound + Detection 

Coupling of theory with applications 
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Lecture 7: Branch-and-Bound + Detection 

Coupling of theory with applications 
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Coupling of theory with applications 
Lecture 7: ADMM + MRFs for Shape Segmentation 

Input image

The model



Organization 
•  3 labs in Matlab (10 points)  

Ø  Start with small preparatory exercises (synthetic data) 

•  1 Project (10 points) 
Ø  Extension of 3 labs to real data 

 
•  Or: small-scale research project (20/20) 
•  Class webpage:  

http://cvn.ecp.fr/personnel/iasonas/teaching.html 
 
•  First class: ENS-Cachan, Oct. 2, Thursday 9h45 

•  Further questions:  iasonas.kokkinos@ecp.fr 
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Lecture outline 
Introduction to the course 

Introduction to the classification problem 

Linear Classifiers 

Image-based features 
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Classification Problem 
•  Based on our experience, should we give a loan to this customer? 

–  Binary decision: yes/no 

 

 features 

Decision boundary 
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`works well’: quantified by loss criterion 

Wanted:  `simple’            that `works well’ for 

Learning problem formulation 
Given: Training set of feature-label pairs    

Why `simple’?   good generalization outside training set 
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Classifier function 

•  Input-output mapping  
 
–  Output:          y 
–  Input:         x 
–  Method:       f 
–  Parameters:  w 

 
•  Aspects of the learning problem 

–  Identify methods that fit the problem setting 
–  Determine parameters that properly classify the training set 
–  Measure and control the `complexity’ of these functions 

 

Slide credit: B. Leibe/B. Schiele 
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Loss criterion 

•  Observations 
–  Euclidean distance is not so good for classification 
–  Maybe we should weigh positives more? 

•  Loss should quantify the probability of error, while keeping the learning 
problem tractable (e.g. leading to convex objectives) 

Desired outputs 

Responses 

Slide credit: B. Leibe/B. Schiele 
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Lecture outline 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Logistic regression 

Linear regression and least squares 

Regularization: ridge regression 

Bias-Variance decomposition 
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Linear regression 
Classifier:  mapping from features                 to labels 

Linear regression: linear 

binary decision can be obtained by thresholding  
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Linear Classifiers 
•  Find linear expression (hyperplane) to separate positive and negative examples 

0:negative
0:positive
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Loss function for linear regression 
Training: given      , estimate optimal  

Loss function: quantify appropriateness of  

sum of individual errors (`additive’) quadratic 

Why this loss function? 

Easy to optimize! 
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Least squares solution for linear regression  

Introduce vectors and matrixes to rewrite as quadratic expression: 

Loss function: 

Residual : 
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Questions 

Is the loss function appropriate? 

Are the estimated parameters good?  

Is the classifier appropriate? 

Quadratic loss: convex cost, closed-form solution 

Linear classifier: fast computation 

How can we know they do not simply memorize training data? 

But does the optimized quantity indicate classifier’s performance? 

But could e.g. a non-linear classifier have better performance? 

Parameters recover input-output mapping on training data 
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Questions 

Is the loss function appropriate? 

Are the estimated parameters good?  

Is the classifier appropriate? 

Quadratic loss: convex cost, closed-form solution 

Linear classifier: fast computation 

How can we know they do not simply memorize training data? 

But does the optimized quantity indicate classifier’s performance? 

But could e.g. a non-linear classifier have better performance? 

Parameters recover input-output mapping on training data 
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¨  We should be considering the function’s sign, not its value 

 

Inappropriateness of quadratic penalty 

Linear Fit 
Computed Decision Boundary  

Desired decision boundary 

We chose the quadratic cost function for convenience 
Single, global minimum & closed form expression  

But does it indicate classification performance? 

Quadratic norm penalizes outputs that are `too good’ 

Logistic regression, SVMs, Adaboost: more appropriate loss 
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Questions 

Is the loss function appropriate? 

Are the estimated parameters good?  

Is the classifier appropriate? 

Quadratic loss: convex cost, closed-form solution 

Linear classifier: fast computation 

How can we know they do not simply memorize training data? 

But does the optimized quantity indicate classifier’s performance? 

But could e.g. a non-linear classifier have better performance? 

Parameters recover input-output mapping on training data 
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Each data point has 

a class label: 
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-1 (  ) 

yt = 

Classes may not be linearly separable 
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Linear classifier cannot properly separate these data 
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Beyond linear boundaries 

Non-linear features: non-linear classifiers & decision boundaries 

How do we pick the right features? 

This class:      domain knowledge 

Next classes: kernel trick (svms)  greedy selection (boosting) 
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Questions 

Is the loss function appropriate? 

Are the estimated parameters good?  

Is the classifier appropriate? 

Quadratic loss: convex cost, closed-form solution 

Linear classifier: fast computation 

How can we know they do not simply memorize training data? 

But does the optimized quantity indicate classifier’s performance? 

But could e.g. a non-linear classifier have better performance? 

Parameters recover input-output mapping on training data 
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Lecture outline 
Introduction to the class 

Introduction to the problem of classification 

Linear regression 
Linear regression and least squares 

Regularization: ridge regression 

Bias-Variance decomposition 

Image-based features 
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Overfitting problem 

Learning problem: 100 faces, 1000 background images 

Image resolution:   100 x 100 pixels (10000 intensity values)  

Linear regression: 

More unknowns than equations: ill posed problem 

Rank-deficient matrix 

`Curse of dimensionality’: in high-dimensional spaces data become sparse 

perfect performance on training set 
unpredictable performance on new data 
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L2 Regularization: Ridge regression 

Penalize classifier’s L2 norm: 

Loss function:  

Full-rank matrix 

data term complexity term 

So how do we set     ?  

residual 
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Tuning the model’s complexity 
A flexible model approximates the target function well in the training set 

  but can overtrain and have poor performance on the test set 

A rigid model’s performance is more predictable in the test set 

 but the model may not be good even on the training set 
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•  Cross validation technique 
–  Exclude part of the training data from parameter estimation 
–  Use them only to predict the test error  

•  10-fold cross validation: 

 

 
•  Use cross-validation for different values of  

–  pick value that minimizes cross-validation error 

Selecting     with cross-validation 

Validation 

Training 
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Lecture outline 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Image-based features 
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Domain knowledge 
We may know that data undergo transformations irrelevant to their class 

E-mail address: capital letters (Iasonas@gmail.com = iasonas@gmail.com)  

Speech recognition: voice amplitude is irrelevant to uttered words 

Computer vision: illumination variations 

Invariant features: not affected by irrelevant signal transformations 
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•  Make each patch have zero mean: 

•  Then make it have unit variance: 

Photometric  transformation:   I → a I + b 

Photometry-invariant patch features 
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What kind of features can appropriately describe texture patterns? 

`appropriately': in terms of well-behaved functions 

Gabor wavelets: 

Increasing  

Dealing with texture 
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Convolve 

Envelope estimation (demodulation) 
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Havlicek & Bovik, IEEE TIP ’00  

Multiband demodulation with a Gabor filterbank 
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Dealing with changes in scale and orientation  

 Scale-invariant blob detector 
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Application: Image Stitching 

Slide credit: Darya Frolova, Denis Simakov 
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Application: Image Stitching 

•  Procedure: 
–  Detect feature points in both images 

Slide credit: Darya Frolova, Denis Simakov 
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Application: Image Stitching 

•  Procedure: 
–  Detect feature points in both images 
–  Find corresponding pairs 

Slide credit: Darya Frolova, Denis Simakov 
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Application: Image Stitching 

•  Procedure: 
–  Detect feature points in both images 
–  Find corresponding pairs 
–  Use these pairs to align the images 

Slide credit: Darya Frolova, Denis Simakov 
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Common Requirements 

•  Problem 1: 
–  Detect the same point independently in both images 

No chance to match! 

Slide credit: Darya Frolova, Denis Simakov 
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Laplacian-of-Gaussian 

Laplacian of Gaussian Gaussian 
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Early edge detection research 
•  Zero-crossings of LoG operator at increasing scales 

•  Different take: go for the maxima/minima 
64 
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Finding blobs 

Filtering= inner product between image patch and filter: template matching 

|I � f |2 = hI � f, I � fi
= hI, Ii+ hf, fi � 2hf, Ii
= C � 2hI, fi
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Scale selection 
•  First idea: convolve with Laplacians at several scales and find 

maximum in scale 
•  Observation: Laplacian decays as scale increases: 

increasing σ 
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Scale normalization 

•  The response of a derivative of Gaussian filter to a perfect step 
edge decreases as σ increases 

 

πσ 2
1
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Scale normalization 

•  The response of a derivative of Gaussian filter to a perfect step 
edge decreases as σ increases 

•  To keep response the same (scale-invariant), must multiply 
Gaussian derivative by σ 

•  Laplacian is the second Gaussian derivative, so it must be 
multiplied by σ2 
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Effect of scale normalization 

extremum 
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Blob detection in 2D 

Laplacian of Gaussian: Circularly symmetric operator for blob 
detection in 2D 
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Blob detection in 2D 

Laplacian of Gaussian: Circularly symmetric operator for blob 
detection in 2D 
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Scale selection 

•  Characteristic scale: peak of normalized Laplacian response 

characteristic scale 
Tony Lindeberg: Feature Detection with Automatic Scale Selection. International 
Journal of Computer Vision 30(2): 79-116 (1998) 
Tony Lindeberg: Edge Detection and Ridge Detection with Automatic Scale 
Selection. International Journal of Computer Vision 30(2): 117-156 (1998) 
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Scale invariance using scale selection 

73 
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Scale-space blob detector: Example 

Slide credit: S. Lazebnik 
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Scale-space blob detector: Example 

Slide credit: S. Lazebnik 
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Scale-space blob detector: Example 

Slide credit: S. Lazebnik 
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Scale-space blob detector: Example 

Slide credit: S. Lazebnik 
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Scale-space blob detector: Example 

Slide credit: S. Lazebnik 



79 Machine Learning for Computer Vision – Lecture 1 

Scale-space blob detector: Example 

Tony Lindeberg: Feature Detection with Automatic Scale Selection. 
International Journal of Computer Vision 30(2): 79-116 (1998) 
 



80 Machine Learning for Computer Vision – Lecture 1 

Blob coordinates:  (x,y,scale) 

Tony Lindeberg: Feature Detection with Automatic Scale Selection. 
International Journal of Computer Vision 30(2): 79-116 (1998) 
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Laplacian of Gaussian ~= Difference of Gaussian 

•  We can efficiently approximate the Laplacian with a difference of 
Gaussians: 

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian) 

(Difference of Gaussians) 

David G. Lowe: Distinctive Image Features from Scale-Invariant 
Keypoints. International Journal of Computer Vision 60(2): 91-110 
(2004) 
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 Efficient Computation (SIFT) 

•  Computation in Gaussian scale pyramid 

σ	



Original image 	


4
1

2=σ

Sampling with 
step σ4 =2 

σ	



σ	



σ	



David G. Lowe: Distinctive Image Features from Scale-Invariant 
Keypoints. International Journal of Computer Vision 60(2): 91-110 
(2004) 
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Keypoind Detection (SIFT) 

(a) 233x189 image 
 

(b) 832 DoG extrema 
 

(c) 729 left after peak 
     value threshold 

 

(d) 536 left after testing 
     ratio of principle 
     curvatures (removing         
     edge responses) 

David G. Lowe: Distinctive Image Features from Scale-Invariant 
Keypoints. International Journal of Computer Vision 60(2): 91-110 
(2004) 
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…	
  

SIFT computation 

Slide credit: E. Tola 
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SIFT computation 

Slide credit: E. Tola 
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…	
  

SIFT computation 

Slide credit: E. Tola 
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descriptor 

…	
  

SIFT computation 

Slide credit: E. Tola 
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SIFT computation 

Slide credit: E. Tola 
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SIFT computation 

Slide credit: E. Tola 
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SIFT computation 

Slide credit: E. Tola 



91 Machine Learning for Computer Vision – Lecture 1 

Scale-Invariant Feature Transform (SIFT) descriptor 

0 2 π 

Use location and characteristic scale given by blob detector 

Estimate orientation from orientation histogram 

Break patch in 4x4 location blocks 

8-bin orientation histogram per block 

8x4x4 = 128-D descriptor 

Normalize to unit norm 

Invariance to: scale, orientation, multiplicative & additive changes 
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Application: Image Matching  
 Assumption: images undergo global deformations with a few degrees-of-freedom 
 (e.g. scaling, rotation) 

 
 Correspondences of a few points suffice  
 (found e.g. with SIFT) 

 

Image 1 Image 2 
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Open source implementation: www.vlfeat.org 
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Further reading (literature ‘seeds’) 

•  Compact Codes & Large-scale Retrieval 
–  J. Sivic and A. Zisserman. Video Google: A text retrieval approach to 

object matching in videos. ICCV, 2003. 
–  Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. 

CVPR. (2006)  
–  M. Perdoch, O. Chum, and J. Matas. Efficient representation of local 

geometry for large scale object retrieval. In Proc. CVPR, 2009 
–  H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local 

descriptors into a compact image representation. CVPR, 10 
–  A. Babenko and V. Lempitsky, The Inverted Multi-Index, CVPR 12 
–  R. Arandjelović, A. Zisserman, All about VLAD, CVPR 2013 

•  Fast/Compact Descriptors 
–  M. Calonder, V. Lepetit, C. Strecha, and P. Fua, BRIEF: Binary Robust 

Independent Elementary Features, (ECCV), 2010.  
–  T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, Boosting Binary 

Keypoint Descriptors. (CVPR), 2013.  
–  SURF, FAST, ORB, FREAK,… 
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Further reading (literature ‘seeds’) 

•  Feature encoding 
–  Improving the fisher kernel for large-scale image classification, F. Perronnin, J. 

Sánchez, and T. Mensink. In Proc. ECCV, 2010. 
–  The devil is in the details: an evaluation of recent feature encoding methods, K. 

Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, BMVC, 2011 
–  Sparse Kernel Approximations for Efficient Classification and Detection, A. Vedaldi 

and A. Zisserman, in Proceedings of the IEEE Conf. on Computer Vision and 
Pattern Recognition (CVPR), 2012 

•  Descriptor Learning 
–  Simon A. J. Winder, Matthew Brown: Learning Local Image Descriptors. CVPR 2007 
–  S. Winder, G. Hua, and M. Brown. Picking the best daisy. In Proc. CVPR, 2009. 
–  Descriptor Learning for Efficient Retrieval, J. Philbin, M. Isard, J. Sivic, A. 

Zisserman,ECCV 10 
–  K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor learning using convex 

optimisation. In Proc. ECCV, 2012 
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•  Dalal and Triggs, ICCV 2005 
–  Like SIFT descriptor, but for arbitrary box aspect ratio, and 

computed over all image locations and scales 
–  Highly accurate detection using linear classifier 

 
 

Histogram of Orientated Gradients (HOG) descriptor 
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Part score computation 

w[y]

h[x+ y]

s[x] =
X

y

hh[x+ y],w[y]i
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Part score s[x] =
X

y

hh[x+ y],w[y]ih[x]
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Part score s[x] =
X

y

hh[x+ y],w[y]ih[x]
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SIFT	
  

+ Good 
Performance -  Not suitable for dense 
 computation 
 

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua, 
PAMI, 10 

SIFT-> DAISY 
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SIFT	
   Sym.SIFT	
  

+ Gaussian 
Kernels : Suitable 
for Dense 
Computation 
 

GLOH*	
  

+ Good 
Performance 
+ Better 
Localization 
-  Not suitable for 
dense 
 computation 

+ Good 
Performance -  Not suitable for dense 
 computation 

*	
  K.	
  Mikolajczyk	
  and	
  C.	
  Schmid.	
  A	
  Performance	
  EvaluaEon	
  of	
  Local	
  Descriptors.	
  PAMI’04.	
  

SIFT-> DAISY 
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DAISY	
  

+ Suitable for dense computation  
+ Improved performance:* 

+ Precise localization 
+ Rotational Robustness 

Sym.SIFT	
  

+ Suitable for 
Dense 
Computation 
 

GLOH	
  

+ Good 
Performance 
+ Better 
Localization 
-  Not suitable for 
dense 
 computation 

*	
  S.	
  Winder	
  and	
  M.	
  Brown.	
  Learning	
  Local	
  Image	
  Descriptors	
  in	
  CVPR’07	
  

SIFT-> DAISY 
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…	
  

…	
  

…

Daisy computation 

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua, PAMI, 10 
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…	
  

…	
  

…

Daisy computation 

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua, 
PAMI, 10 
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DAISY :     5s 
SIFT    : 250s 

-  Rotating the descriptor only involves reordering the histograms.  
- The computation mostly involves 1D convolutions, which is fast.  

Daisy computation 

DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo, E. Tola, V. Lepetit, P. Fua, PAMI, 10 
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Scale- and rotation- invariance & Fourier 

Fact 1: Signal translation does not affect the signal’s Fourier Transform Magnitude: 

Fact 2: log-polar sampling turns image scaling and rotation to translation: 
 Original Scaled 

angle angle 

sc
al

e 

sc
al

e 

Image + grid@point Image + grid@point descriptor   descriptor  

Fact 1+2: the Fourier Transform Modulus of log-polar descriptors is invariant  
 I. Kokkinos and A. Yuille, Scale Invariance without Scale Selection, CVPR, 2008.  

D. Casasent and D. Psaltis, Rotation and scale-invariant optical correlation, Applied Optics, 1976  
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Dense Scale-Invariant Descriptors 

I. Kokkinos and A. Yuille, Scale Invariance without Scale Selection, CVPR, 2008.  
D. Casasent and D. Psaltis, Rotation and scale-invariant optical correlation, Applied Optics, 
1976  
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Problem: How can a computer find cars (or faces, hands..) in images? 
 
 
 
 
 
 
 
 
 
 
 
Deep Learning: Breakthroughs in speech & vision: classification, detection, 

recognition,… 
 
 
 
 
 
 
 
 

 

 
 

2000-2010 

1980’s 

2010+ 

Results from GoogLeNet, 2014 
ECP entry: 7th out of 38  
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Lecture summary 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Image-based features 
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Learning Segmentation 
Faces Recognition 

Submission/Acceptance Statistics from CVPR 2010 

Who will need this class? 
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                     Precision-Recall Curves on the B   erk   100 test images 

Humans 

Best up to  ~1990 
Learning-based, ‘04 

Learning-based, ‘08 

1965 

Progress during the last 4 decades 
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Lecture summary 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Image-based features 
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Classifier function 

•  Input-output mapping  
 
–  Output:          y 
–  Input:         x 
–  Method:       f 
–  Parameters:  w 

 
•  Aspects of the learning problem 

–  Identify methods that fit the problem setting 
–  Determine parameters that properly classify the training set 
–  Measure and control the `complexity’ of these functions 
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Lecture summary 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Image-based features 
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Linear Classifiers 
•  Linear expression (hyperplane) to separate positive and negative examples 

0:negative
0:positive

<+⋅

≥+⋅

b
b

ii

ii

wxx
wxx

Each data point has 

a class label: 

 +1 (  ) 
-1 (  ) 

yt = 

Feature coordinate i 

Fe
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e 
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di
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 j 
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Linear regression  

Least-squares: 

Ridge regression: 

Tuning    : cross-validation 
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L2 Regularization: Ridge regression 

Penalize classifier’s L2 norm: 

Loss function:  

Full-rank matrix 

data term complexity term 

So how do we set     ?  

What is a good tradeoff between accuracy and complexity? 
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Tuning the model’s complexity 
A flexible model approximates the target function well in the training set 

  but can be fooled by noise and overtrain 

A rigid model is more robust  

 but will not always provide a good fit 
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Lecture summary 
Introduction to the class 

Introduction to the problem of classification 

Linear classifiers 

Image-based features 



120 Machine Learning for Computer Vision – Lecture 1 

Gabor, SIFT, HOG, Haar... 

Encapsulate domain knowledge about desired invariances  

analytical tractability  

computational efficiency 

degree of invariance 

task-specific performance 

... 
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Appendix-I What is the right amount of flexibility? 

Slide credit: Hastie & Tibshirany, Elements of Statistical Learning, Springer 2001 
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Bias-Variance-I 

   
 

Assume underlying function: 

Our model approximates it by: 

Approximation quality: affected by model’s flexibility, and the training set. 

Model’s value at       : random variable  

Different training set realizations: different models 

Express the expected generalization error of the model at        : 
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Appendix-II: Ridge regression = parameter shrinkage 

Least squares parameter estimation: minimization of 

Reference: Hastie & Tibshirani, Elements of Statistical Learning, Springer 2001 
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SVD-based interpretation of least squares 

Singular Value Decomposition (SVD) of 

Reconstruction of y on the subspace spanned by X’s columns 
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•  Minimization of 

•  Regularization: penalty on large values of  
•  Solution 

•  SVD interpretation 

•  `Shrinkage’ 

SVD-based interpretation of Ridge Regression 
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•  Covariance matrix (centered data): 

•      : eigenvectors of covariance matrix 
•      : eigenvalues 
•  Shrinkage: downplay coefficients corresponding to smaller axes  
•  Effect for 

–  Projections: 

–  Eigenvalues  

–  Shrinkage factors 
 

Feature Space Interpretation of ridge regression 
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•  Minimization of 

•  Regularization: penalty on sum of absolute values of   
•  Comparison with Ridge Regression 

–  Gradient does not depend on value of   
–  Sparsity & subset selection 

Lasso 


